Learning to discover: expressive Gaussian mixture models for multi-dimensional simulation and parameter inference in the physical sciences
نویسندگان
چکیده
Abstract We show that density models describing multiple observables with (1) hard boundaries and (2) dependence on external parameters may be created using an auto-regressive Gaussian mixture model. The model is designed to capture how observable spectra are deformed by hypothesis variations, made more expressive projecting data onto a configurable latent space. It used as statistical for scientific discovery in interpreting experimental observations, example when constraining the of physical or tuning simulation according calibration data. also sampled use within Monte Carlo chain, estimate likelihood ratios event classification. method demonstrated simulated high-energy particle physics considering anomalous electroweak production Z boson association dijet system at Large Hadron Collider, accuracy inference tested realistic toy example. developed methods domain agnostic; they any field perform where dataset consisting many real-valued has conditional parameters.
منابع مشابه
Regularized Parameter Estimation in High-Dimensional Gaussian Mixture Models
Finite gaussian mixture models are widely used in statistics thanks to their great flexibility. However, parameter estimation for gaussian mixture models with high dimensionality can be challenging because of the large number of parameters that need to be estimated. In this letter, we propose a penalized likelihood estimator to address this difficulty. The [Formula: see text]-type penalty we im...
متن کاملwillingness to communicate in the iranian context: language learning orientation and social support
why some learners are willing to communicate in english, concurrently others are not, has been an intensive investigation in l2 education. willingness to communicate (wtc) proposed as initiating to communicate while given a choice has recently played a crucial role in l2 learning. it was hypothesized that wtc would be associated with language learning orientations (llos) as well as social suppo...
Inference for the physical sciences.
There is a disconnect between developments in modern data analysis and some parts of the physical sciences in which they could find ready use. This introduction, and this issue, provides resources to help experimental researchers access modern data analysis tools and exposure for analysts to extant challenges in physical science. We include a table of resources connecting statistical and physic...
متن کاملon the relationship between self- regulated learning strategies use and willingness to communicate in the context of writing
این تحقیق به منظور بررسی رابطه بین میزان استراتژیهای خود-تنظیم شده یادگیری و تمایل به ایجاد ارتباط دانشجویان زبان انگلیسی انجام شده است.علاوه بر این،روابط و کنش های موجود بین ریزسنجه های استراتژیهای خود-تنظیم شده یادگُیری ، مهارت نگارش و تمایل به برقراری ارتباط و همچنین تاٍثیرجنسیت دانشجویان زبان انگلیسی در استراتژیهای خود-تنظیم شده یادگیری و تمایل به برقراری ارتباط آنها مورد بررسی قرار گرفته شد.
15 صفحه اولEfficient Greedy Learning of Gaussian Mixture Models
This article concerns the greedy learning of gaussian mixtures. In the greedy approach, mixture components are inserted into the mixture one after the other. We propose a heuristic for searching for the optimal component to insert. In a randomized manner, a set of candidate new components is generated. For each of these candidates, we find the locally optimal new component and insert it into th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine learning: science and technology
سال: 2022
ISSN: ['2632-2153']
DOI: https://doi.org/10.1088/2632-2153/ac4a3b